Chap.18 Nucleid atom //Ex

 

Exercises

Chap.18


💞 Questions // Group A

Binding Energy and Nuclear Stability

1- Specify the composition of the uranium-235 nucleus (Z=92).

2- Calculate the mass defect of this nucleus in atomic mass units then in kilograms.

3- Calculate, in joules then in MeV, the binding energy of this nucleus.
Given: 1 eV = 1.6022×10⁻¹⁹ J; c = 3×10⁸ m/s; 1u = 931.5 MeV/c²

4- Calculate the binding energy per nucleon of this nucleus.

5- Compare the stability of uranium-235 nucleus to that of radium-226 nucleus whose binding energy is 7.66 MeV per nucleon.

💞 Questions // Group B

Study of Gold Radionuclide

6) a. Calculate the mass of a gold atom Au.

6) b. Compare the mass of gold atom Au to its nucleus mass.

7) The average radius of gold atom is r = 1.6×10⁻¹⁰ m. The average nucleon radius is r₀ = 1.2×10⁻¹⁵ m. Compare the density of gold atom to its nucleus density. Conclude about matter distribution in the atom.

💞 Questions // Group C

Nuclear Physics - Nucleus, Stability & Binding Energy

8. Calculate the mass defect and binding energy of iron-56 nucleus (⁵⁶Fe) with mass 55.934937 u. (Mp = 1.007276 u, Mn = 1.008665 u)

9. Using the Aston curve, explain why medium-mass nuclei are the most stable.

10. Compare the stability of these nuclei with justification: ¹²C, ⁵⁶Fe, ²³⁸U.

11. Calculate the radius of silver-107 nucleus (A = 107) using the formula R = R₀A1/3 with R₀ = 1.2 fm.

12. Why are nuclei with magic numbers of protons/neutrons exceptionally stable?

Exercice 1 : Étude du radionucléide Au

On donne :
- Masse molaire de Au : 198 g/mol
- Nombre d'Avogadro : 6,022×10²³ mol⁻¹
- Masse de l'électron : 5,50×10⁻⁴ u
- Célérité de la lumière : c = 3×10⁸ m/s
- 1 u = 931,5 MeV/c² = 1,66×10⁻²⁷ kg
- 1 eV = 1,6×10⁻¹⁹ J
- Masse du noyau Au : 197,925 u
- Masse du noyau Hg : 197,923 u
- Masse du proton : mp = 1,00728 u
- Masse du neutron : mn = 1,00866 u

A- Comparaison de la masse volumique du noyau d'or et de celle de l'atome d'or

1) a. Calculer la masse d'un atome d'or Au.

1) b. Comparer la masse de l'atome d'or Au à celle de son noyau.

2) Le rayon moyen d'un atome d'or est r = 1,6×10⁻¹⁰ m. Le rayon moyen d'un nucléon est r₀ = 1,2×10⁻¹⁵ m. Comparer la masse volumique de l'atome d'or à celle de son noyau. Conclure à propos de la répartition de la matière dans l'atome.

Exercise 2:

 Cobalt-60 Nuclear Excited State

A cobalt-60 nucleus 6027Co in an excited state emits γ radiation with energy 1.33 MeV when returning to its ground state.

Given:
• Ground state mass = 59.93382 u
• γ energy = 1.33 MeV
• 1 u = 931.5 MeV/c²

Find: The mass of the nucleus in the excited state.

Solution:

Step 1: Convert γ energy to atomic mass units (u)

1.33 MeV ÷ 931.5 MeV/c²/u = 0.0014278 u

Step 2: Calculate excited state mass

Massexcited = Massground + Eγ/c²
= 59.93382 u + 0.0014278 u
= 59.9352478 u

Final Answer:
The mass of the cobalt-60 nucleus in the excited state is 59.93525 u (rounded to 6 decimal places).

Exercise 3: 

Calculating Number of Nuclei

A sample contains 5 mg of radium-226 (22688Ra) where each nucleus has a mass of 225.9770 u.

Given:
• Sample mass = 5 mg = 5×10-6 kg
• Mass per nucleus = 225.9770 u
• 1 u = 1.66×10-27 kg

Calculate: The number of nuclei in this sample.

Solution:

Step 1: Convert nuclear mass to kg

Mass per nucleus = 225.9770 u × 1.66×10-27 kg/u
= 3.7512182×10-25 kg

Step 2: Calculate number of nuclei

Number of nuclei = Total mass / Mass per nucleus
= 5×10-6 kg / 3.7512182×10-25 kg
≈ 1.33×1019 nuclei

Final Answer:
The 5 mg sample of Ra-226 contains approximately 1.33×1019 nuclei.




⬆️ العودة إلى الأعلى

No comments:

Post a Comment

Total Pageviews

Followers